User and Developer Manual for:
Automated QM/MM Average Protein
Electrostatic Configuration Approach for
Flavoproteins [APEC-F 2.0]

Latest update: April 28t*, 2025

1. Introduction

Welcome to the user manual for [Automated QM/MM Average Protein Electrostatic
Configuration Approach for Flavoproteins: APEC-F 2.0], a tool designed to au-
tomatically model FMN and FAD-binding flavoproteins in any redox state and to account
for a fully flexible solvated protein model. The first part of this manual (Sections 2 and
3) provides step-by-step instructions to install and use APEC-F 2.0. The next section
(Section 4) provides more information about the code architecture for developers or users
interested in making minor adjustments to the protocol. Lastly, section 5 is the trou-
bleshooting section. For more information about the APEC approach and background,
please check the associated manuscript (in preparation).

1.1 Purpose

The objective of this version of the APEC code, [APEC-F 2.0], is to deliver a fully
automated approach that requires minimal user intervention while offering an updated
codebase compatible with the latest open-source software versions at the time of publish-
ing this manual. This includes seamlessly integrating APEC-FEG with current versions
of OpenMolcas, Tinker, and GROMACS. By leveraging advancements in paralleliza-
tion within OpenMolcas and the high-performance GPU-accelerated algorithms in GRO-
MACS, [APEC-F 2.0] achieves a substantial improvement in computational efficiency
and performance.

2. Getting Started

2.1 System Requirements

e Operating System: This version of APEC-F 2.0 was tested on both Ubuntu ver-
sions 20.04.6 and 22.04. It should be compatible with most modern Linux operating
systems running bash, python3, and with gcc compilers available.

e The following dependencies will be automatically installed by the setup
script:
— termcolor Python package.
— matplotlib Python package.
— SLURM (Simple Linux Utility for Resource Management).
— git (Version Control System).

e The following open-source dependencies should be installed ahead of
time by the user:

— OpenMolcas and Tinker for QM/MM calculations. Two scripts (OpenMol-
cas_ASEC _Install.sh and get_tinker_Openmolcas) are made available as part of
the APEC-F 2.0 github repository to aid in installing those programs and to
carry out a few important modifications to the source code.

Link to repository.

— GROMACS for MD calculations: Link to GROMACS
— Dowser for model setup routine.Link to Dowser.
— VMD for residue selection. Link to VMD.
— SCWRL4 for mutations: Link to SCWRILA4.
e The user should modify the following SLURM submission scripts found
inside camino to run GROMACS and Molcas jobs on their cluster:
— gromacs.slurm.sh
— gromacs.slurm_GPU.sh

— molcas.slurm.sh

2.2 Quick Start

A video tutorial outlining the steps in this section is available on YouTube.
The written instructions are included below:

The setup.sh script can be used to install the code and set up a python virtual
environment. This script downloads the full set of [APEC-F 2.0] scripts and installs the
python dependecies listed above. setup.sh should be obtained from the following link.

The setup.sh script performs the following tasks:

Downloads the code repository from Git.

Installs virtualenv if it is not already installed.

Creates a Python virtual environment.
e Installs the required Python packages within the virtual environment.
Follow these steps to set up a new APEC job:

1. Navigate to the directory containing the setup.sh script on |GitHub.

https://github.com/gozem-gsu/Automated-APEC-F
https://manual.gromacs.org/current/download.html
https://github.com/caraortizmah/dowser
https://www.ks.uiuc.edu/Development/Download/download.cgi?PackageName=VMD
http://dunbrack.fccc.edu/lab/scwrl
https://www.youtube.com/watch?v=QKPV2fbTPbQ
https://github.com/gozem-gsu/Automated-APEC-F
https://github.com/gozem-gsu/Automated-APEC-F

2. Run the setup.sh script:

bash setup.sh
or:
./setup.sh

3. Activate the python virtual environment APEC_USFE R_timestamp:

cd APEC_$USER_$timestamp/bin
source activate

4. 1If the following folders are found: logs, processes, or databases please remove them:

rm -r logs/ processes/ databases/

5. To request mutations you need to create a file called “seqmut” and request the
desired mutations: e.g Q430E. You can request as many mutations as you want in
one sinlge run, or pick one mutation at a time.

nano seqmut
Q430E

By following the steps above, you are ready to run APEC-F 2.0. Two sample files
have been provided for you to test. They are 1j8q.pdb and CHR_chain.xyz. Simply run
the following command to start executing the 5 Steps of APEC. Running the script in
the background is recommended since the full execution is time-consuming, ensuring that
the terminal remains available for other operations:

bash main.sh &
or:
./main.sh &

3. Usage

3.1 Input Example

The input is a parameters file having the following format (hereby we present an example).
project_name NSQ-flavo

chromo_FF _name CHR

oxidation_state Neutral-Semiquinone

pdb_file 1j8q.pdb

charge_chromophore -2

flavin_model Neutral-Semiquinone

tail FMN

box_shape cubic
edge_dist 2
size_cubicbox null
conc_NaCl 0.1
SOL y

NPT production_temperature 298
NPT _heating_phase_time 300
equilibration_phase 79700

NPT production_phase_time 0

GPU _use y

NVT _production_temperature 298
NVT _heating_phase 300

NVT _equilibrationphasel 9700

NVT _production_phase 10000

NVT parallelize production_phase n
number_parallelMD 1
NVT_GPUuse y

3.2 Parameters File Variables

The parameters file should be placed in your working directory at the same level as
New_APEC.sh, main.sh, first MD_calculations.sh, first QMMM calculations.sh,
nth MD_calculations.sh, nth_ QMMM_calculations.sh, init_db.py, update_status.py,
and display_status.py. It is crucial to preserve the variable names exactly as provided,
as they are read by the scripts throughout the workflow. You only need to input the val-
ues or make specific selections based on your protein case. Below is a detailed explanation
of each variable:

e project_name: Assign a meaningful name to the project, ensuring it is no longer
than 22 characters. The project name should not start with a number.

e chromo FF name: name of the chromophore residue according to how you named
it in your force field files. For instance, in flavodoxins, flavin is labeled ‘CHR’ (no
matter what the redox state).

e oxidation_state: Specify the redox state of interest for the calculations. The
available options are:

Quinone
Anionic-Semiquinone
Neutral-Semiquinone

Anionic-Hydroquinone

GU W

Neutral-Hydroquinone

For example, to run calculations for the quinone state, write oxidation_state
Quinone (leave only one space between the variable name and the input value).
Ensure the spelling matches the options exactly, including capitalization, as varia-
tions like ASQ or Anionic-semiquinone will cause the code to fail.

pdb_file: Enter the name of your pdb file exactly as it appears in your folder. For
example, “1j8q.pdb”. The pdb file with the same name should be located in the
same directory of your parameters file.

flavin model: Specify the flavin model corresponding to the chosen redox state.
For this current implementation of the code, this parameter should be kept identical
to what is entered for oxidation state.

charge _chromophore: Define the charge of the chromophore based on the oxidation
state. For example, a Quinone, Neutral-Semiquinone, Neutral-Hydroquinone have
a charge of -2 while Anionic-Semiquinone and Anionic-Hydroquinone have a charge
of -3.

tail: For this parameter, you are specifying whether the “tail” moiety attached to
the isoalloxazine ring corresponds to FMN or FAD. Simply input either FMN or FAD
here.

size_cubicbox: Please enter any random value here, as it will be self-populated
after obtaining a volume equilibrated with NPT dynamics. Do not leave this pa-
rameter empty. We suggest using “null.”

box_shape: cubic. Given that the workflow needs to compute a final box side before
NVT steps, the current APEC version has been developed for globular solutes
(e.g.: flavoproteins), where it is straightforward to compute. This parameter is
compulsory cubic for now.

edge_dist: default value is 2 (nm). Sets the distance of the edges of the solute from
the box facets in the initial GROMACS structure. This distance should be larger
than the intermolecular interaction cutoffs (either electrostatics, set by rcoulomb
in the mdp file, or van der Waals, set by rvdw).

conc_NaCl: Specify the additional molar concentration of both sodium (Na*) and
chloride (C17) ions to provide the simulation box with a desired ionic strength. If
willing to avoid this addition, set it to 0 (do not write 0.0, nor “null” values). A
value of 0 indicates that only a minimal number of counterions are used to neutralize
the system, with no additional ions. For example, if your protein has a net charge
of —20, the simulation will automatically add 20 Na*t ions to achieve neutrality.
The minimal number of counterions required to neutralize the system are always
added but are not counted in this parameter value. Instead, specifying a value of

0.1 means that, in addition to the 20 Na™ ions required to neutralize a —20 charged
protein, an extra 0.1 M [Na*] and 0.1 M [C17] will be added to the system, creating
a net balance and representing the salt concentration. The total number of ions
added can be found in the Infos.dat file inside the Step folders as “Added_NAs”
and “Added_CLs” .

SOL: Indicate whether the system is solvated (y) or not (n). Currently, APEC-F
2.0 allows only solvated systems.

NPT _production_temperature: Define the target Kelvin temperature for the NPT
equilibration phase (constant number of molecules, pressure, and temperature).
Default: 298 K (room temperature).

NPT heating phase time: ps heating time for the preparatory NPT stage, cur-
rently set to 300 ps. The system will be heated from the 0 K MM minimized
structure to the desired production temperature.

equilibration phase: ps equilibration time after the previous heating time. Cur-
rently set to 79700 ps.

NPT _production phase_time: set to 0 (ps). If willing to make APEC based on an
NPT workflow, this parameter will set the production time to be sampled from the
following QM /MM phase of the step. At the moment, this degree of freedom is not
to be exploited, as the frozen chromophore setting is not compatible with an NPT
ensemble; we listed this parameter in case of new future developments.

7

GPU_use: Indicates whether NPT molecular dynamics is run on GPU. Default: “y

NVT_production temperature: Set the target Kelvin temperature for the NVT
production phase (constant number of molecules , volume, and temperature). De-
fault: 298 K.

NVT_heating phase: ps heating time of all NVT productions, currently set to 300
ps. In each of Steps 0, 1, 2, 3, 4, 5, etc., the system will be heated from the 0
K MM minimized structure to the desired production temperature (default: 298
K). MD velocities are not transferred between steps, so at the start of each step
the system is again reheated to gradually anneal it from 0 K to room temperature,
ensuring the chromophore and surrounding environment are properly equilibrated
before initiating dynamics.

NVT_equilibrationphasel: ps equilibration time after previous heating. Currently
set to 9700 ps. This yields a total of 10000 ps equilibration splitted into 300 ps
heating and 9700 ps equilibration.

NVT_production phase: Total production time in NVT trajectories. Conforma-
tions evolved during this time span will be sampled to provide the general MM
embedding of the QM moiety during the following optimization step. Currently set
to 10000 ps.

NVT_parallelize production_phase: Indicate if willing to perform two parallel,
independent NVT trajectories (y), or a single, longer one (n). Currently set to “n”

due to the relatively short dynamics. At this stage, RMSD plots are printed in the
output of the NVT simulation. By default, the y-values are set to ax.set_ylim(0,0.3),
which usually is sufficient to capture RMSDs for smaller flavoproteins. The RMSD
plots can be re-generated by the user, who can modify the ax.set_ylim variable and
replot the .png image using python3 plot_RMSDs.py script.

e number_parallelMD: This variable is read if NVT_parallelize production_phase
is set to “y”. Otherwise, it should be set to “n”.

e NVT GPUuse: Indicates whether NVT molecular dynamics is run on GPU. GPUs

Uy,

are useful to sped up calculations if available. Default: “y

4. Code Architecture

4.1 A note on changes to the MD protocol in APEC-F 2.0

Hereby we discuss the main MD edits with respect to the APEC versions used in prior
publications.

The main change is that APEC-F 2.0 now only uses an 80 ns NPT simulation once at
the start of the protocol to determine the solvent box size, and then all simulations are
run using NVT throughout the multi-step process. At the NPT stage, the chromophore
is kept flexible, as the pressure coupling implies a coordinate rescaling algorithm that is
not compatible with freezing any part of the system. As a consequence, the very last
minimization step prior to the NPT trajectory is with flexible chromophore, too. In the
updated protocol, we determine the volume of the box using the “edge_dist” variable
which determines the distance from the edge of the box to the protein (by default, 2 nm).

$gropath/gmx editconf -f $Project.gro -bt $box_shape -d
$edge_dist -o ${Project}_box_init.gro -c

After the preparative Sim NPT folder step, one gets equilibrated volume and plugs
it without the -d 2 editconf flag, but this time using the -box option with the updated
size of the box that will be calculated from the output of NPT simulation and updated
to the given size_cubicbox parameter initially starting with a null value.

$gropath/gmx editconf -f $Project.gro -bt $box_shape -box
$box $box $box -o ${Project}_box_init.gro -c

With this approach, we set the box size based on the size of the system and leave a
2 nm buffer region so that the solute does not get close enough to the edge to interact
with its PME image.
During NVT simulations and throughout almost all the APEC machinery, the chro-
mophore is kept frozen using the freezegrps option. The only exception is during the
NPT step and prior minimization steps, where the freezegrps option in the dynamic_sol NPT.mdp

file is commented out using semicolons (“;;”), the “Solvent_box.sh” script includes the
following lines that control the freezing option:

if [[$initial == "YES"]]; then

sed -i "s/freezegrps = GroupDyna/;freezegrps = GroupDyna/
g" min_sol.mdp

sed -i "s/freezedim = Y Y Y/;freezedim = Y Y Y/g" min_sol
.mdp

fi

The “Initial” variable is initialized to “YES” in the Infos.dat text file present in the camino
prior to the start of the APEC workflow. The variable is then automatically switched
to NO after the NPT trajectory. We modify the value of the “Initial” parameter in the
Infos.dat in the first_MD_calculations.sh script and set it to NO. The last few lines of
Solvent_box.sh script indicates whether the next script to be run would be MD_NPT.sh
or MD_NVT'.sh based on value of variable Initial in the Infos.dat.

if [[$initial == "YES"]]; then
cp $templatedir/ASEC/MD_NPT. sh
./update_infos.sh "Next_script" "MD_NPT.sh" Infos.dat
./update_infos.sh "MD_ensemble" "NVT" Infos.dat

else
cp $templatedir/ASEC/MD_NVT.sh .
./update_infos.sh "Next_script" "MD_NVT.sh" Infos.dat
./update_infos.sh "MD_ensemble" "NVT" Infos.dat

fi

This means that running Step.0 for the first time (using initial_ MD_calculations.sh),
the MD_NPT.sh will be called after Solvent_box.sh and then Step_0 will be renamed to
initial_Step_0. After the box size has been determined by the NPT run, the real Step_0 is
initiated and repeats minimization and dynamics using the NVT ensemble and keeping
the chromophore frozen. We change the value of the Initial variable in the Infos.dat from
YES to NO only once in the first_MD_calculations.sh before running Solvent_box.sh, using
the following command:

sed -i ’s/ " Initial .*/Initial NO/’ Infos.dat

We don’t need to worry about later Steps as this change of Initial variable value to NO
will persist across all Steps, as the Infos.dat will be copied from Step_x to Step_x-+1.

Another change is that we now use a time step of 2 fs (old value: 1 fs), with con-
comitant plug of LINCS H-bonds constraints. Plugging the latter is important when
adopting a time step of 2 fs, as any bond with an H atom usually oscillates too rapidly
to be properly described with the larger timestep. In practice, the LINCS algorithm is
the equivalent of slowing down the stretching of bonds involving an H in a way that does
not undermine the reliability of the oscillation description.

With the increase of the timestep from 1 to 2 fs, sampling time is approximately
doubled at the same computational cost. There are two advantages of this approach with
respect to the old version of APEC. First, we start sampling later (e.g., after 10 ns instead
of 5 ns), meaning that we have a higher chance to start the production simulation from a
well-equilibrated structure. Second, we are likely to sample more uncorrelated frames (as
they are spaced by 100 ps not 50 ps anymore), thus allowing the system to evolve for a
longer time. In the past, we typically run 2 replicas of 7.5 ns NV'T productions with a 1
fs time step (15 ns in total); instead, we now run a single 20 ns trajectory with a 2 fs time
step. Therefore, now the NVT phase is globally even less computationally demanding.

4.2 Code overview

The automated code design is organized into the following scripts:

e main.sh: The primary script responsible for executing all the following scripts in
sequence, from Steps 0 through the last one. Based on our experience on several
classes of small flavoproteins tested so far, we estimate 5 steps of the APEC cycle
being generally sufficient to yield a converged structure and spectroscopic prop-
erties. By default, 5 steps are requested by the main.sh script, but this can be
modified by the user. If needed to change the requested flow of iterative steps, one
can simply change the sequence in the main.sh specifically in this line:

for step in $(seq 1 5); do

Depending on the intended usage of APEC-F 2.0, we advise the user to run multiple
steps of APEC and test the result for their property or energy of interest. By doing
so, the user checks for convergence and obtains statistical information about the
error / sensitivity of their calculations to different APEC configurations.

— initial_MD _calculations.sh: Executes Step_0 using NPT to determine the
volume of the system and updates the box size in the parameters file. This is
the only step where NPT simulations are used. All subsequent steps will use
NVT-based dynamics simulation while keeping the flavin geometry frozen.

— first_MD_calculations.sh: Runs the workflow of the Molecular Dynamics
(MD) calculations specifically for Step_0 .

— first QMMM calculations.sh: Executes the Quantum Mechanics/Molecu-
lar Mechanics (QM/MM) calculations for Step_0 .

— nth_MD _calculations.sh: Performs MD calculations for Steps 1 through 5.

— nth QMMM calculations.sh: Runs the QM /MM calculations for Steps 1
through 5.

e init_db.py: Each of the MD scripts above also automatically runs the init_db.py
script, which initializes the database of script names and prepares a table that will
be used to monitor status, run-times, and number of retries triggered for each script.
A new database is generated at each step (0 to 5) as soon as that step starts. The
database files are stored in the same folder inside of /databases as APEC_0.db for
Step 0, APEC_1.db for Step 1, etc.

e update_status.py: This script is called automatically at the start and end of
each inner script (e.g., New_APEC.sh, NewStep.sh, Solvent_box.sh, MD_NVT.sh,
ASEC.sh, etc.) which are automated to be run through first_ MD_calculations.sh,
first_ QMMM _calculations.sh, 1_MD_calculations.sh, etc, to update the execution
status of each script. The status options include:

NOT _RUN: Displayed in black, indicating the script has not been executed.

RUNNING: Displayed in yellow, indicating the script is currently executing.

PASSED: Displayed in green, indicating successful execution.
— FAILED: Displayed in red, indicating an error occurred during execution.
e display_status.py: This script can be run by the user at any time to print the live

status. It prints the execution status and run times of all scripts. It is primarily
used to track the progress of the calculations and to get an idea about timings. To

monitor the flow of scripts, including each script’s status and which step you are
currently at, please run python3 display_status.py. You can also create an alias
and add it to the .bashrc file by following these steps:

1. Open the .bashrc file:

vi ~/.bashrc

2. Add the following line to create an alias:

alias display=‘python3 display_status.py’

3. Save the file and reload the .bashrc file:

source ~/.bashrc

Following these steps will enable you to monitor the status using the command
display instead of running python3 display_status.py each time. Please recall
that you should run these scripts in the working directory where the display_status.py
script resides.

e processes.sh: In case the user wishes to terminate an APEC run prematurely
before the last step, they should use the processes. sh script. This script identifies
and kills shell script processes running in the current directory for a specific user.
It performs the following steps:

1. Retrieves the current directory and the first 6 characters of the username.

2. Lists the PIDs of shell scripts (.sh) running under the user’s name, excluding
the processes. sh script itself.

3. Defines a function check_and kill, which checks if a process is running in the
current directory and kills it if true.

4. Tterates through each PID and calls the check_and kill function to terminate
processes in the current directory.

5. Prints a confirmation message once all relevant processes are killed.

To run the script, execute processes.sh in the terminal. This will kill all processes
running shell scripts in the current directory for the logged-in user. It should be
used when restarting a project under the same directory.

e APEC SetupPhoton.sh: This script prepares a PDB file for QM /MM calcula-
tions. It includes the following steps:

1. Input and Cleaning: The script prompts the user to specify the PDB file
to process. It filters the file to retain only the ATOM, TER, and HETATM records,
creating a cleaned version of the PDB.

2. Chain Identification: The script identifies and stores all unique chain iden-
tifiers present in the cleaned PDB file. APEC-F 2.0 is currently only able to
treat monomeric systems. If multiple chains are present, the user is prompted
to select one. The selected chain is extracted into a separate monomer PDB

file.

10

3. Chromophore Extraction: The script identifies the chromophore (e.g.,
FMN or FAD) in the monomer file. It extracts the coordinates and atom
labels into an XYZ file while also creating a PDB file that excludes the chro-
mophore for subsequent QM /MM preparation.

4. Oxidation State Setup: The user specifies the oxidation state of the chro-
mophore. Based on this, the script prepares molecular files (e.g., mol2 and
xyz) with appropriate connectivities and hydrogenation levels.

4.3 Step Overview

The code execution process is structured around three main directories that facilitate
tracking, database management, and logging for each step of the workflow:

e Processes Folder:

— Stores process IDs (PID) for the main.sh script.

— Each process ID corresponds to a specific script, such as:

*

first MD _calculations.pid for first MD_calculations.sh, which runs
the MD calculations for Step 0.

1 MD_calculations.pid for 1 MD_calculations.sh, which runs the MD
calculations for Step 1.

1 QMMM _calculations.pid for 1 QMMM calculations.sh, which runs the
QMMM calculations for Step 1.

5 MD_calculations.pid for 5.MD_calculations.sh, which runs the MD
calculations for Step 5.

5_QMMM_calculations.pid for 5_QMMM_calculations.sh, which runs the
QMMM calculations for Step 5.

— These files allow the system to monitor script execution and ensure a step is
complete before proceeding.

e Databases Folder:

— Contains SQLite databases for managing the execution status of each step.

— Each database stores detailed information for its respective step, including;:

*

*

*

Start and end times of the execution.
Status indicators (NOT,RUN, RUNNING, PASSED, FAILED).
Other relevant data associated with the step.

e Logs Folder:

— Contains log files for each workflow step and its associated scripts.

— Logs track success messages from each script.

— A script is marked as successful only if it produces the expected success mes-
sage in its log file.

— If a success message is missing, the script is marked as FAILED, and the work-
flow halts before proceeding to the next step.

11

4.4 Individual Script Handling

Function Explanations

1. Polling Script Execution: Two Implementations of polling loop

The polling loop function is used to monitor the execution of scripts and ensure their
completion by periodically checking for specific success criteria. Two distinct implemen-
tations are provided below:

1. First Implementation: Basic Polling Loop

This implementation monitors the completion of a script by checking for pre-
defined success messages in output files.

The function starts by running the script and initializes a timer to track the
polling period.
It loops until either all success conditions are met or the timeout period is
reached.
Within the loop:
— The function iterates through each success message and corresponding file.
— If all success messages are found in their respective files, the script is
marked as passed.

If the timeout period is reached without meeting the success conditions, the
script is marked as failed.

polling_loop "MD_NVT.sh" NVT_success_messages [@]
NVT_files_to_check[@]

This implementation is primarily used for scripts where multiple conditions must
be validated across multiple files.

2. Second Implementation: SLURM Job Monitoring

This version monitors jobs submitted to a SLURM scheduler using the squeue
command.

The function starts the script and retrieves its job ID from a specified file.

A loop periodically checks the SLURM job queue for the presence of the job
ID associated with the script.

— If the job ID is no longer found, the function checks for success messages
in a specified output file to determine if the script has passed.

— If the success message is found, the script is marked as passed; otherwise,
it is marked as failed.

If the job ID remains in the queue beyond the timeout period, the script is
marked as failed.

polling_loop "script_name" "jobid_file" "output_file"
"success_message"

This implementation is used for scripts involving SLURM job scheduling and re-
quires real-time job monitoring.

12

Comparison of the Implementations

e The first implementation focuses on general-purpose file-based polling, making it
suitable for workflows where multiple conditions are checked across different files.
(for example MD_NVT.sh)

e The second implementation is specifically tailored for SLURM-based job monitor-
ing, integrating job ID tracking with success validation from output files.

2. restart_after_5_days Function

The restart_after_5_days function is designed to handle long-running computational
tasks (optimizations in particular) that may require restarting due to timeouts. Below is
a breakdown of the key components:

Function Overview:

e extension (argument 1): Specifies the calculation’s file extension or identifier (e.g.,
VDZP_Opt).

e script (argument 2): The name of the script (e.g., ASEC. sh) that is being executed.
Steps:

1. The function starts by setting the status of the script to RUNNING using
update_status.py.

2. Tt then changes to the directory $Project_{extension} where the calculations are
stored.

3. A try_counter is initialized to 0, and the script enters a loop to retry the task
up to 5 times. Each attempt is triggered every 5 days. If an optimization is not
completed within 5 days, the function is triggered to complete the optimization
and restart from where it stopped. A try_0 folder is created after the first 5 days,
try_1 is created after 10 days of optimization, and try_2 is created after 15 days,
etc .. The total number of allowed restarts is limited to 5 to prevent the script from
entering an infinite loop.

4. For each attempt, it:
e Creates a new directory try_ 0, try_.1, etc. to organize the results of each
try.
e Moves the files from the current directory into the new try directory.

e Copies the latest xyz file and other necessary files like amber99sb. prm, molcas-job. sh,
and others into the new try folder.

e Submits the job with sbatch molcas-job.sh and stores the job ID.

5. After submission, it enters a while loop to monitor the job status using the squeue
command. If the job is running, it waits and checks periodically.

6. If the job is not found in the queue, the function waits for a few minutes before
checking again.

13

7. If the job finishes, it checks the output file ($Project_{extension}.out) for the
phrase Happy landing!, which indicates a successful completion of a Molcas job.

8. If the output is not successful, the function moves on to the next try.

9. If the job reaches the timeout limit (5 trys), the function breaks the loop and exits
with an error message.

Usage in ASEC.sh: In the ASEC. sh script, the restart_after_5_days function is
used after the completion of the polling loop function. If the job completes successfully
and the output file contains Happy landing!, the script marks the job as PASSED using
update_status.py. Otherwise, if the job has not successfully completed, it calls the
restart_after 5 days function to restart the task, passing the necessary arguments for
the extension and script name.

Example usage in ASEC.sh:

polling_loop "ASEC.sh" "$CURRENT_DIR/Step_O/calculations/\${
Project}_VDZP_0Opt/jobid"

if [-f "\${Project}_VDZP_Opt/\${Project}_VDZP_Opt.out" 1];

then
if grep -iq "Happy landing!" "$CURRENT_DIR/Step_0/
calculations/\${Project} _VDZP_Opt/\${Project}_VDZP_Opt
.out"; then
python "$CURRENT_DIR/update_status.py" "ASEC.sh"
PASSED $CURRENT_DIR
else
restart_after_b_days VDZP_0Opt ASEC.sh
fi
else

restart_after_b_days VDZP_0Opt ASEC.sh
fi

3. check_value_within_tolerance

This function validates whether a given value (e.g., system total charge) lies within a
specified tolerance range.

e Validation: If the value is zero, the status is PASSED. Otherwise, it checks if the
value lies within the range [-tolerance, +tolerance]. By default, we have set
the tolerance to £0.005 charge.

e Failure Handling: If out of range, an error message indicates whether the value
is too high or too low, and the script status is set to FAILED.

Example: A system total charge of 0.006 exceeds a tolerance of 0.005, causing the
script to fail.

14

4. run_script

This function is meant for scripts that do not use SLURM to submit jobs and therefore
does not require monitoring. The function executes a given script, monitors its output,
and validates its success based on a predefined success message.

e Input Parameters:

— script: The name of the script to execute.

— success_msg: The message indicating successful execution of the script.
e Execution Process:

1. Updates the status of the script to RUNNING.
2. Executes the script and logs its output to a specified log file.
3. Searches the log file for the success message:

— If found, updates the status to PASSED and exits successfully.

— If not found, retries the script execution up to two times, updating the
status to FAILED after each failed attempt.

1. Example 1: Executing New_APEC.sh
— The script New_APEC. sh is executed using run_script. The success mes-
sage expected in the log file is:
"Folder Step_O created! «cd Step.0/, then ./NewStep.sh"

— If the script runs successfully, the directory changes to Step_0 using cd
Step-0.

— If the success message is not found after retries, the workflow exits with a
failure code.

— Command:

run_script "New_APEC.sh" "Folder Step_0
created! cd Step_0/, then ./NewStep.sh"
&% cd Step_0 || exit 1
2. Example 2: Running NewStep.sh

— The next script, NewStep.sh, is executed with the success message:

"Continue executing: Solvent_box.sh"

e Failure Handling: If the success message is still not found after two retries, the
function exits with a failure code.

5. Additional Logic

e Temperature Validation: The averaged NVT temperature is compared to the
production temperature. It passes if the temperature is less than the target or
within 10 degrees from it.

e Error Handling: Timeout and validation checks provide feedback to ensure ro-
bustness and traceability.

15

5. Troubleshooting

5.1 Where to look

APEC-F 2.0 is meant to facilitate and automate the construction of QM/MM models
efficiently. However, we strongly advise all users and developers to check, at least when
running the code for the first time on a new system, that things are going as expected.

The first place to check on the progress of the calculations or look for potential er-
rors is in the logs folder. There, you will find the output of both the main wrappers
(initial,MD,calculations.log,first,MD,calculations.log, first_QMMM_calculations.log,
1 MD_calculations.log, etc.) as well as for each of the individual scripts inside of the
Step folders. It is useful to go through those files and check for errors.

Next, it is recommended that the user check the results of the MD in Step_0 or Step_1.
Specifically, inside each step there is a Dynamic/output that includes an md.log file, a
$Project_box_sol.ndx file, and scripts to compute and plot RMSDs. It is advisable
that users check all of those files. The ndx file can be visualized along with the cor-
responding $Project_box_sol.gro using vind. With the exception of jobs run inside
initial-Step_0, visualization of any other MD simulations should reveal that the flavin
is frozen but bound to the protein binding pocket where it is expected to be.

Also inside Step_0 or Step_1 should be another folder named calculations. It
is recommended that users check on progress of the QM/MM geometry optimization
which occurs inside the folder $Project _VDZP_Opt. There, the $Project _VDZP Opt.out,
$Project_VDZP Opt.err, and $Project_VDZP Opt.Tinker.log can all be good files to
check for debugging purposes. The .molden files there can be viewed with the Molden
visualization package to check the progress of the flavin geometry optimization and molec-
ular orbitals.

Between these three folders (logs, Dynamics, and calculations), the user can fol-
low the progression of the calculation and will be able to catch issues early if they occur.

5.2 Some common issues
Below is a discussion of some of the most common issues and how to troubleshoot them.
e Error: Missing Dependency

— Solution: Run pip install -r requirements.txt to ensure all dependen-
cies are installed. Also ensure that GROMACS, OpenMolcas, Tinker, and
a SLURM cluster are installed and properly configured before starting the
project.

e Error: Virtual Environment Not Started

— Solution: Activate the virtual environment by running
source env/bin/activate.

e Error: Wrong Python Version

— Solution: Ensure that Python 3.9 or above is installed. To verify your Python
version, run: python3 --version.

16

e Error: File input/output error or mkdir: cannot create directory - Re-
mote I/O error

— Solution: I/0O errors are often associated with a full hard drive. In such cases,
it is useful to check the trajectory using Gromacs:

gmx check -f your_trajectory.trr

If the job ID is present, this means the trajectory has been generated and
copied back, but the simulation might not have completed the entire run (e.g.,
it may have finished only 20 ns instead of the requested 80 ns). This issue can
arise due to disk memory problems, being over quota, or having a full disk. If
you would like to reduce the size of the MD trajectory output, you can reduce
the print frequency by adjusting the following parameters in the MDP files:

nstxout = 5000

nstvout = 5000

nstfout = 5000
to

nstxout = 500000

nstvout = 0

nstfout = 0

This would be useful to be done at level of dynamic_sol NPT.sh, for the 80
ns NPT run, as we are mainly concerned with the volume and we don’t really
need structural data. For best practices, monitor your disk usage and clear any
old files you no longer need. It may also be useful to delete large files generated
by the Molcas portion of the code; pay particular attention to scratch files you
may not need, such as OrdInt or NqGrid files from Molcas. You can also save
space just by removing the “grid_it” module from Molcas input files, unless
you need it. To check the sizes of directories or files, use:

du -sh x

You can also sort the results to identify large folders using:

du -sh * | sort -h

To remove .trr or .xtc files, use the following command:

find . -name "*.trr*" -exec rm -f {} +
find . -name "*.xtc*" -exec rm -f {} +

Be careful with these commands, as a typo (e.g., a space between the star and
the extension) could delete all your files.

If an error occurs early in the APEC-F 2.0 run, it is recommended to remove
Step_0, logs, processes, and database folders and run a fresh simulation with:

./main.sh &

If instead the error occurs at a later step, e.g., the MD steps of Step_2, you
can manually remove Step_2, go to Step_1, and run:

./Next_Iteration.sh

17

Also, clear the APEC2.db file from the database folder, any “2_MD _calculations.sh”
files from the logs folder, and any “2_ QMMM calculations.sh” files from the
logs folder. Additionally, remove any “2*.pid” files from the processes folder.

rm -r Step_2
cd logs

rm -r Step_2
rm 2%

cd processes
rm 2%

cd databases
rm APEC_2.db

When doing this, ensure to comment out the following lines in the main.sh:

./initial_MD_calculations.sh >logs/
initial_MD_calculations.log 2>&1 &

echo $! >processes/initial_MD_calculations.pid

wait_for_script "processes/initial_MD_calculations.
pid"

mv logs/Step_0 logs/initial-Step_0

mkdir -p logs/Step_0

./first_MD_calculations.sh > logs/
first_MD_calculations.log 2>&1 &

echo $! > processes/first_MD_calculations.pid

wait_for_script "processes/first_MD_calculations.pid"

./first_QMMM_calculations.sh > logs/
first_QMMM_calculations.log 2>&1 &
echo $! > processes/first_QMMM_calculations.pid
wait_for_script "processes/first_QMMM_calculations.
p i d n
Also, modify the loop from:
for step in $(seq 1 5); do
to:
for step in $(seq 2 5); do
Also, modify the following:

rm -rf databases/x
rm -rf logs/x
rm -rf processes/x

to:

echo "rm -rf databases/x*"
echo "rm -rf logs/x*"
echo "rm -rf processes/x"

18

Then, run:

./main.sh &

This will allow the automated version to restart from Step_2.
e Error: Invalid Input Format

— Example: As a user, you are not explicitly asked to enter any meaningful
value for size_cubicbox parameter as this parameter will be self-populated after
running NPT dynamics. However, it is compulsory to not keep this parameter
empty and to enter any random value or character such as null. Otherwise, the
parameter will not be populated and the dynamics will get stuck at level of Sol-
vent_box.sh when running it again after the pre-initial APEC preparation (i.e,
after storing the first Step_0 as initial-Step_0/ and running the actual Step_0
starting with a volume equilibrated with NPT in an NVT-frozen chromophore
fashion.

— Solution: Verify that your input file adheres to the expected format as de-
tailed in Section 3.1 of the documentation.

e Error: Display Status Not Returning Data

— Solution: Make sure to activate the virtual environment before running
./main.sh &. After executing ./main.sh &, runthe python3 display_status.py
command in the terminal to ensure that the status is displayed. If the following
error appears: sqlite3.0perationalError: no such table: APEC_STATUS,
make sure to:

rm -r Step_0

rm -r logs

rm -r databases
rm -r processes
./processes.sh
./main.sh &

e Error: GROMACS and OpenMolcas jobs are not running after being
submitted with sbatch

— Solution: The user should customize their SLURM scripts found inside the
camino path. Specifically, the gromacs.slurm.sh, gromacs.slurm GPU.sh,
and molcas.slurm.sh scripts are called regularly by APEC-F 2.0 and should
be configured to properly run GROMACS and OpenMolcas on the user’s clus-
ter. A scratch directory specified in those scripts should also be accessible and
have sufficient space.

6. Contact Information

If you encounter any issues or have questions, please contact us using the details below:

e Email: sgozem@gsu.edu, selhajjl@student.gsu.edu

e GitHub: Submit an Issue on GitHub

19

mailto:support@example.com
https://github.com/gozem-gsu/Automated-APEC-F

